
Nathaniel T. Schutta
@ntschutta

ntschutta.io

Thinking Architecturally

https://content.pivotal.io/
ebooks/thinking-architecturally

https://content.pivotal.io/ebooks/thinking-architecturally
https://content.pivotal.io/ebooks/thinking-architecturally

Architecting is hard…

Many competing agendas.

Technology changes.

Constantly.

Feature not a bug.

Keeps things interesting…

We want to avoid legacy platforms.

But we can’t change
things every few months.

“Our app has 4 different
UI frameworks…”

Developers kept chasing
the new hotness.

How do we avoid that?

How do we evaluate new technology?

I have no idea what language/
framework/platform is “next”.

No one does.

But I can guarantee you this much:

It will be different than
what we use today.

Five years from now we will be using
something that isn’t invented yet.

Chasing the new thing.

Technology changes.

Constantly.

Tempting to always chase
the “new hotness”.

Bleeding edge.

It’s fun!

Part of being in this industry.

https://mobile.twitter.com/ASpittel/status/1101165138361479169

https://mobile.twitter.com/ASpittel/status/1101165138361479169

https://mobile.twitter.com/ProfFeynman/status/1101703855937675266

https://mobile.twitter.com/ProfFeynman/status/1101703855937675266

Our understanding constantly evolves.

ht
tp

s:
//

tw
itt

er
.c

om
/b

en
ed

ic
te

va
ns

/s
ta

tu
s/
94
71
91
12
80
75
27
62
88

https://twitter.com/benedictevans/status/947191128075276288

Let’s be honest…

Developers have opinions!

Often *very* strong opinions.

https://mobile.twitter.com/ProfFeynman/status/1081226199521808386

https://mobile.twitter.com/ProfFeynman/status/1081226199521808386

Maybe we fear old things?

https://mobile.twitter.com/royvanrijn/status/1117700862959411200

https://mobile.twitter.com/royvanrijn/status/1117700862959411200

ht
tp

s:
//

tw
itt

er
.c

om
/la

pc
at

so
ft

w
ar

e/
st

at
us

/9
43
89
96
30
08
08
72
44
9

https://twitter.com/lapcatsoftware/status/943899630080872449

Predictable hype cycle.

https://mobile.twitter.com/cote/status/963481741171265537

https://mobile.twitter.com/cote/status/963481741171265537

How do we know where
not to use a technology?

Trial and error.

Developers tend to get bored quickly.

Learning keeps it fresh.

But we have to deliver business value.

Can’t do that if we’re
always experimenting.

Have to commit at some point.

Develop some expertise.

Bleeding edge…means you will bleed!

https://mobile.twitter.com/joeerl/status/930774515512201216

https://mobile.twitter.com/joeerl/status/930774515512201216

Pioneers…the ones with
arrows in their backs.

What is your strategy?

How do we avoid dead platforms?

Without constantly
changing direction?

Strategy.

Hope is not a strategy!

But it is what rebellions are built on.

We need to be deliberate.

There are a lot of bits out there...

New languages,
techniques, approaches.

How do you keep up?

Blogs? Books? Twitter?
Podcasts? Conferences?

Develop a routine.

Block out Friday afternoon.
Tuesday over lunch. Whatever fits.

Consider “morning coffee”.

Take 15-30 minutes in the
morning to peruse the tech news.

Before the day gets away from you…

Attention is precious.

https://mobile.twitter.com/mtnygard/status/1103697486823284736

https://mobile.twitter.com/mtnygard/status/1103697486823284736

— Seth Godin

“Attention is a bit like real estate, in
that they're not making any more of
it. Unlike real estate, though, it
keeps going up in value.”

http://sethgodin.typepad.com/seths_blog/2011/07/
paying-attention-to-the-attention-economy.html

http://sethgodin.typepad.com/seths_blog/2011/07/paying-attention-to-the-attention-economy.html
http://sethgodin.typepad.com/seths_blog/2011/07/paying-attention-to-the-attention-economy.html

Don’t waste it.

Be selective.

Can’t read it all.

http://www.npr.org/blogs/monkeysee/2011/04/21/135508305/the-sad-
beautiful-fact-that-were-all-going-to-miss-almost-everything

In fact, you’ll miss almost everything.

http://www.npr.org/blogs/monkeysee/2011/04/21/135508305/the-sad-beautiful-fact-that-were-all-going-to-miss-almost-everything
http://www.npr.org/blogs/monkeysee/2011/04/21/135508305/the-sad-beautiful-fact-that-were-all-going-to-miss-almost-everything

We cannot adopt every new thing.

How do we know where
to invest our time?

Hacker’s Radar?

http://www.paulgraham.com/javacover.html

http://www.paulgraham.com/javacover.html

“I have a hunch that [Java] won't be
a very successful language.”

Never written a line of Java,
glanced at some books.

Need more than just a hunch.

“Judging Covers” can be a useful filter.

But beware bias.

Where is the community?

Are you skating to
where the puck *was*?

Technology Radar.

https://www.thoughtworks.com/radar

https://www.thoughtworks.com/radar

Remember Google’s 20% time?

Fallen out of favor in some circles…

Innovation Fridays.

Could you carve out Friday afternoons?

How about Tuesday Tech Talks?

Architectural Briefings.

https://github.com/stuarthalloway/presentations/wiki/Architectural-Briefings

https://github.com/stuarthalloway/presentations/wiki/Architectural-Briefings

One person does some
research, presents to the team.

And no, you don’t need to be
an architect to present!

Why should we use X?

What do you need to know
to answer the “why”?

What do you need to
know in order to use X?

Keep it short - 45 minutes.

Not a how to.

Beyond the initial documentation.

These are participatory events!

Attendees should be taking notes.

Asking questions.

Using their own experiences.

Do you agree? Why or why not?

By the way, you are up next week…

Pass the briefing filter?

Hands on time.

Workshop it.

Couple of hours.

A few exercises.

Focus on how to, simple setup.

Pass the hands on filter?

Time to trial it in the organization.

Real project work that is a good fit.

Probably not a “bet the
company” project though!

The new hotness is not our
only concern though.

Need to stay current on the things
we are using day in day out.

Oops.

Don’t think you’re a target?

— Justin Smith

At high velocity, the three Rs starve
attacks of the resources they need to
grow. It’s a complete 180-degree change
from the traditional careful aversion to
change to mitigate risk. Go fast to stay
safer — in other words, speed reduces risk.

What is your patching strategy?

What version of X are you on?

Some organizations have
a policy of N or N-1.

Do they measure it? Do they enforce it?

What needs to change in your
culture to stay at N?

What hurts more? Changing
your patching strategy?

Or being on the receiving end of
the latest “largest hack ever”?

Pros and Cons.

Every technical choice
involves tradeoffs.

— Susan J. Fowler 
Production-Ready Microservices

When we find ourselves presented
with technology that promises to
offer us drastic improvements, we
need to look for the trade-offs.

Essence of design.

To paraphrase Harry Truman…

Give me a one handed technologist.

Should we use React or Angular?

Should we refactor to microservices?

Should we be on prem
or public cloud?

https://twitter.com/KentBeck/status/596007846887628801

https://twitter.com/KentBeck/status/596007846887628801

In many cases?

&& ! ||

Balancing those opposing
forces is the art of architecture.

No tech is perfect, don’t pretend it is.

Acknowledge the negatives.

What do you like about it?

What don’t you like about it?

What would you add?

What would you remove?

King of Java for a day...

https://mobile.twitter.com/kelseyhightower/status/963428093292457984

https://mobile.twitter.com/kelseyhightower/status/963428093292457984

How does it stack up to alternatives?

The spreadsheet approach.

Options across the top.

Criteria down the left.

Criteria can be weighted.

Harvey balls.

http://en.wikipedia.org/wiki/Harvey_Balls

http://en.wikipedia.org/wiki/Harvey_Balls

!"#$%

How closely does does it
map to the criteria?

Very effective...

Angular React

Documentation % $
Community % $

Committer diversity % %
Codebase % %
Testability % %

Update history $ $
Maturity % $

Angular React

Stability % $
Extensibility % %

Support % %
Training % %
Hiring % $

Corporate fit ? ?

Usage % %

What criteria should you use?

How should they be weighted?

Up to you.

You can tip the scales…

Usually backfires.

Quality Attributes.

Sometimes called non
functional requirements.

Or quality goals, constraints,
quality of service goals…

Cross-functional requirements.

Architecturally significant requirements.

The “ilities”!

Customers usually focus
on functionality.

It’s what they “see” after all.

Obviously important we
meet their needs!

But we have to look beyond that.

Vital that we focus on quality attributes.

Service level objectives if you will.

What are some quality attributes?

Maintainability.

Scalability.

Reliability.

Security.

Deployability.

Simplicity.

Usability.

Compatibility.

Fault tolerance.

Modularity.

The list goes on and on!

http://en.wikipedia.org/wiki/List_of_system_quality_attributes

http://en.wikipedia.org/wiki/List_of_system_quality_attributes

What quality attributes
do you focus on?

https://twitter.com/KentBeck/status/596007846887628801

https://twitter.com/KentBeck/status/596007846887628801

Depends a lot on the type
of software you build!

We don’t get to turn
every knob to 11 do we?

Inverse relationships.

Maximizing one may
minimize another.

Security and usability for instance.

It’s a balance.

Some are obvious to our customers.

If the systems won’t
support the user load…

Fairly easy to convince
people of the importance.

Others - are “invisible”.

Or at least harder to see.

Maintainability and
simplicity for instance.

How do we get the
decision makers to buy in?

What techniques can we
use to influence them?

Outline the benefits.

Find common ground.

Avoid aggression.

Listen.

Have a conversation!

Can be hard to convince people!

Two approaches...

Find the influencers.

Influence the influencers.

Approach as equals.

Rely on the strength of your
ideas and your reputation.

Your reputation speaks for
you when you aren’t there.

Not sure what your rep is?

Ask.

May not like the answer…

But you can work to change it.

Find common ground.

Reciprocity rules…

Be helpful.

Be respectful.

Research your ideas.

Use trusted sources.

Recruit credible allies.

Nothing wrong with bringing help!

Speak their language.

Avoid techno babble.

You may be impressed by the jargon…

Most customers aren’t.

What resonates in your organization?

Cost savings?

Developer productivity?

Speed to market?

Shape your approach accordingly.

The iDon’tDrive System.

Self driving cars are all
the rage these days.

Let’s pretend our
company has the answer!

VCs can’t give us money fast enough.

Customers are flocking to
our stylish website.

Our team has been tasked to
build a backend system.

The cars generate a lot of data.

Battery level, health of the
engine, maintenance.

Basics

Car “phones home” on a regular basis.

Sends a standard data payload including VIN.

Demand is extremely high.

Expect millions of cars on the road in the next 3 years.

Marketing is full of great ideas…

System must be available 24x7.

Customer Facing

Web interface as well as mobile apps.

Allow an owner to check the stats of their car.

When does it need maintenance? How’s the battery? Etc.

Must be secure - only access *your* car.

Allow owner to summon the car to their present location.

Push notifications for maintenance, low battery etc.

Company Facing

Fleet generates a lot of information that can be mined.

Data must be anonymized.

Ensure only authorized users have access.

Audit access to customer data.

Push software updates to the car.

Push recall/update information to customers.

What quality attributes
matter most here?

What words/phrases
stand out to you?

Basics

Car “phones home” on a regular basis.

Sends a standard data payload including VIN.

Demand is extremely high.

Expect millions of cars on the road in the next 3 years.

Marketing is full of great ideas…

System must be available 24x7.

Customer Facing

Web interface as well as mobile apps.

Allow an owner to check the stats of their car.

When does it need maintenance? How’s the battery? Etc.

Must be secure - only access *your* car.

Allow owner to summon the car to their present location.

Push notifications for maintenance, low battery etc.

Company Facing

Fleet generates a lot of information that can be mined.

Data must be anonymized.

Ensure only authorized users have access.

Audit access to customer data.

Push software updates to the car.

Push recall/update information to customers.

Auditability! Availability.
Security. Usability.

How would you rank them?

Depends on the
perspective of the system!

From a driver/owner…

Rank Quality
Attribute Comments

1 Usability Customers will not read a manual on how to use
the iDon’tDrive system.

2 Availability Owner must be able to summon a car 24x7.

3 Security Owner must be confident that only then can
access their car.

4 Reliability System must work as expected when called upon
to maintain confidence in the system.

From a service center…

Rank Quality
Attribute Comments

1 Security Only authorized users should have access to the
system.

2 Auditability System should audit access to determine
appropriate usage of the system.

3 Efficiency System should be minimize the time service
representatives need to find information.

4 Usability System should require minimal training and allow
new service reps to be productive quickly.

What architectural
decisions result from that?

Rank Quality
Attribute Decision(s)

1 Usability UX designers will be engaged and ensure the
design requires no training to use.

2 Availability
System will be geographically dispersed across
multiple data centers. Zero downtime deploys will
be utilized.

3 Security
Standard three zone security will be employed.
System will encrypt personally identified
information and follow all security standards.

4 Reliability System will be geographically dispersed across
multiple data centers.

Questions?

Your turn!

What quality attributes
matter most for your kata?

How would you rank them?

What architectural
decisions might result?

Establish principles.

We can’t be everywhere…

We can’t be involved
with every decision.

We can establish principles.

Guard rails.

Guide posts.

North stars.

Create the environment within
which our projects can thrive.

But how do we know if projects
are following our principles?

Fitness functions.

We’re all familiar with the second
law of thermodynamics…

Otherwise known as a
teenagers bedroom.

The universe really
wants to be disordered.

Software is not immune from this!

We go through the thoughtful
effort to establish an architecture…

How do we maintain it?

We can’t spend every minute of
every day on every project.

How do we ensure teams
continue to make good decisions?

We cannot predict the future.

https://mobile.twitter.com/wattersjames/status/1102634943975317504

https://mobile.twitter.com/wattersjames/status/1102634943975317504

That’s not entirely true.

One constant - change.

Architecture is often defined as the
decisions that are hard to change.

Or the decisions we wish we got right.

But we *know* things will change!

Isn’t this approach anti agile?

Contributing factor to the “we’re agile,
we don’t have architects” theory.

You definitely have people
making architectural decisions!

Sure hope they are
making good ones…

You’ll know in a year or two.

“Our app has 4 different
UI frameworks…”

🤔

What do we do about that?

Maybe we should change
our assumptions.

 https://mobile.twitter.com/martinfowler/status/949323421619548161

https://mobile.twitter.com/martinfowler/status/949323421619548161
https://mobile.twitter.com/martinfowler/status/949323421619548161

What if our architectures
expected to change?

ht
tp

://
ev

ol
ut

io
na

ry
ar

ch
ite

ct
ur

e.
co

m

http://evolutionaryarchitecture.com

— Building Evolutionary Architectures

An evolutionary architecture
supports guided, incremental
change across multiple dimensions.

Some architectures are more
evolvable than others…

ht
tp

://
ev

ol
ut

io
na

ry
ar

ch
ite

ct
ur

e.
co

m

http://evolutionaryarchitecture.com

Components are deployed,
features are enabled via toggles.

Allows us to change incrementally.

Also perform hypothesis
driven development!

But how do we ensure the
architecture still meets our needs?

How do we know if a solution
violates part of the architecture?

Fitness functions!

Concept comes from
evolutionary computing.

Is this mutation a success?

Are we closer to or
further from our goal?

For architecture, it is all
about protecting the ilities.

And balancing the tradeoffs.

We want to capture and preserve the
key architectural characteristics.

First, we need to identify those key
measures for project success.

Service Level Indicators if you will.

What can we measure?

Sometimes we let what we can
measure dictate too much…

Just because we can measure it
doesn’t mean it matters!

Lines of code anyone?

Once we have our metrics,
we can set some goals.

Service Level Objectives.

SLO !== SLA!

Now we can create a fitness function!

Basically, a set of tests we execute
to validate our architecture.

How close does this particular
design get us to our objectives?

Ideally, all automated. But we may
need some manual verifications.

For example…

All service calls must
respond within 100 ms.

Cyclomatic complexity
shall not exceed X.

There are no cyclic dependencies.

clarkware.com/software/JDepend.html

http://clarkware.com/software/JDepend.html

Directionality of imports.

persistence

web

util

packages/namespaces

persistence

web

util

packages/namespaces

Consumer Driven Contracts.

https://martinfowler.com/articles/consumerDrivenContracts.html

https://martinfowler.com/articles/consumerDrivenContracts.html

Performance - average and
maximum response times.

Scalability - average response times
across number of users and requests.

Number of timeouts and
application faults.

Nearing the next price tier
with our cloud provider.

Hard failure of an application
will spin up a new instance.

Alert when things start
to go out of band!

ht
tp

s:
//

gi
th

ub
.c

om
/N

et
fli

x/
Si

m
ia

nA
rm

y

https://github.com/Netflix/SimianArmy

Chaos Engineering.

https://medium.com/production-ready/chaos-monkey-for-fun-and-profit-87e2f343db31

Your turn!

What fitness functions would
you recommend for your kata?

Don’t worry about implementing them!

Fitness functions remind us what is
important in our architecture.

Informs our thinking about tradeoffs.

Different categories of fitness functions.

Atomic vs. Holistic.

Some characteristics must be tested
in isolation…others cannot.

Holistic fitness functions
test combined features.

We can’t test every
possible combination!

Must be selective, driven by the value
of the architectural characteristic.

Triggered vs. Continual.

Must consider frequency of
execution.

Fitness functions can be triggered by
something - checkin, QA pass…

Continual tests are just that.

Monitoring Driven Development!

http://benjiweber.co.uk/blog/2015/03/02/monitoring-check-smells/

http://benjiweber.co.uk/blog/2015/03/02/monitoring-check-smells/

Static vs. Dynamic.

Static tests have a fixed result -
they either pass or they fail.

Nearly any test based on a metric.

Other fitness functions have a
shifting definition of success.

Generally defined within a
range of acceptable outcomes.

Automated vs. Manual.

Automation is good!

Ideally most of our fitness functions
will live in our deployment pipeline.

Not everything is amenable
to automation though…

Legal.

Existing projects.

Temporal fitness functions.

Essentially a reminder.

Check for an upgrade of library X.

Break upon upgrade tests.

Clearly we want to identify fitness
functions as early as we can.

The discussion about the tradeoffs is
invaluable to our understanding.

Help us prioritize features.

May lead us to break a system
up to isolate certain features.

We can’t know everything up front.

Fitness functions will emerge
as the system changes.

But we should strive to identify
as many as we can up front.

We can also classify fitness functions.

Key - critical decisions.

Relevant - considered but unlikely
to influence the architecture.

Not Relevant - won’t
impact our decisions.

Can still be very useful to identify
the non relevant dimensions!

Keep fitness functions visible!

Need to review the fitness functions.

Are they still relevant?

Are there new dimensions
we need to track?

Are there better ways of measuring/
testing our current fitness functions?

Aim for at least an annual review.

Architectural Decisions.

They happen!

How do we document them?

Lightweight Architecture
Decision Records.

https://www.thoughtworks.com/radar/techniques/lightweight-architecture-decision-records

https://www.thoughtworks.com/radar/techniques/lightweight-architecture-decision-records

Title/ID.

What is the problem?

List assumptions and constraints.

What are the options?

List the pros and cons of
each alternative.

Which one did you chose?

Why?

Status - is this a proposal or has this
been accepted? Is it now deprecated?

Consequences of the decision.

Consider a “time capsule”.

Screen cast or podcast of
what you did and why.

Prevent Monday morning
quarterbacking…

Or just “why did we do this?”

Should be stored in version control.

Keep old decisions around - just make
sure they are marked appropriately!

Your turn!

What architectural decision
would you make on your kata?

What are the options?

Create an ADR!

Architecting is hard…

We have a lot to juggle!

Important that we thing strategically.

We can’t afford
Resume Driven Design.

Good luck!

Questions?

Nathaniel T. Schutta
@ntschutta

ntschutta.io

Thanks!
I’m a Software

Architect,
Now What?

with Nate Shutta

Modeling for
Software

Architects
with Nate Shutta

Presentation
Patterns

with Neal Ford & Nate Schutta

